Aurélio Campilho Fakhri Karray Zhou Wang (Eds.)

NCS 12132

Image Analysis and Recognition

17th International Conference, ICIAR 2020 Póvoa de Varzim, Portugal, June 24–26, 2020 Proceedings, Part II

Contents - Part II

Machine Learning

Weighted Fisher Discriminant Analysis in the Input and Feature Spaces Benyamin Ghojogh, Milad Sikaroudi, H. R. Tizhoosh, Fokliri Karray, and Mark Crowley	3
Backprojection for Training Feedforward Neural Networks in the Input	
and Feature Spaces	16
Parallel Implementation of the DRLSE Algorithm Daniel Popp Coelho and Sergio Shiguemi Furuie	25
A Multiscale Energy-Based Time-Domain Approach for Interference	
Detection in Non-stationary Signals	36
SMAT: Smart Multiple Affinity Metrics for Multiple Object Tracking Nicolas Fsanco Gonzalez, Andres Ospina, and Philippe Calvez	-48
Combining Mixture Models and Spectral Clustering for Data Partitioning Julien Muzeau, Moria Oliver-Parera, Patricia Ladret, and Pascal Bertolino	63
MSPNet: Multi-level Semantic Pyramid Network for Real-Time	
Object Detection Ji Li and Yingdong Ma	76
Multi-domain Document Layout Understanding Using Few-Shot	
Object Detection Pranaydeep Singh, Srikrishna Varadarajan, Ankit Narayan Singh, and Muktabh Mayank Srivastava	89
Object Tracking Through Residual and Dense LSTMs Fabio Garcea, Alessandro Cucco, Lia Morro, and Fabricio Lamberti	100
Theoretical Insights into the Use of Structural Similarity Index	
in Generative Models and Inferential Autoencoders	112
Efficient Prediction of Gold Prices Using Hybrid Deep Learning	118

XIV	Contents -	Part 11

Exploring Information Theory and Gaussian Markov Random Fields for Color Texture Classification Cédrick Bamba Nsimba and Alexandro L. M. Levada	130
Anomaly Detection for Images Using Auto-encoder Based Sparse Representation	144
Medical Image Analysis	
A Framework for Fusion of T1-Weighted and Dynamic MRI Sequences João F. Teixeira, Silvia Bessa, Pedro F. Gouveia, and Hélder P. Oliveira	157
Contributions to a Quantitative Unsupervised Processing and Analysis of Tongue in Ultrasound Images. Fábio Barros, Ana Rita Valente, Luciana Albuquerque, Samuel Silva, António Teixeira, and Catarina Oliveira	170
Improving Multiple Sclerosis Lesion Boundaries Segmentation by Convolutional Neural Networks with Focal Learning Gustavo Ulloa, Alejandro Veloz, Héctor Allende-Cid, and Héctor Allende	182
B-Mode Ultrasound Breast Anatomy Segmentation	193
Enhancing the Prediction of Lung Cancer Survival Rates Using 2D Features from 3D Seans	202
Lesion Localization in Paediatric Epilepsy Using Patch-Based Convolutional Neural Network Azad Aminpour, Mehran Ebrahimi, and Elysa Widjojo	216
Deep Learning Models for Segmentation of Mobile-Acquired Dermatological Images Catarina Andrade, Luis F. Teixeira, Maria João M. Vasconcelos, and Luis Rosado	228
Semi-nutomatic Tool to Identify Heterogeneity Zones in LGE-CMR and Incorporate the Result into a 3D Model of the Left Ventricle	238

:

Analysis of Histopathology Images

A Deep Learning Based Pipeline for Efficient Oral Cancer Screening on Whole Slide Images Jiahao Lu, Nataša Sladoje, Christina Runow Stark, Eva Darai Ramqvist, Jan-Michaël Hirsch, and Joakim Lindblad	249
Studying the Effect of Digital Stain Separation of Histopathology Images on Image Search Performance	262
Generalized Multiple Instance Learning for Cancer Detection in Digital Histopathology	274
Diagnosis and Screening of Ophthalmic Diseases	
A Multi-dataset Approach for DME Risk Detection in Eye Fundus Images Catarina Carvalho, João Pedrosa, Carolina Mala, Susana Penas, Ângela Carneiro, Luis Mendonça, Ana Maria Mendonça, and Aurélia Campilho	285
Enhancement of Retinal Fundus Images via Pixel Color Amplification Alex Gaudio, Asim Smailagic, and Aurélio Campilho	299
Wavelet-Based Retinal Image Enhancement Safinaz ElMahmoudy, Lamiaa Abdel-Hamid, Ahmed El-Rafel, and Salwa El-Ramiy	313
An Interpretable Data-Driven Score for the Assessment of Fundus Images Quality Youri Peskine, Marie-Carole Boucher, and Farida Cheriet	325
Optic Disc and Fovea Detection in Color Eye Fundus Images Ana Maria Mendonça, Tânia Melo, Teresa Araiĝo, and Aurélio Campilho	332
The Effect of Menopause on the Sexual Dimorphism in the Human Retina – Texture Analysis of Optical Coherence Tomography Data Ana Nunes, Pedro Serranho, Hugo Quental, Miguel Castelo-Braneo, and Rui Bernardes	344
Deep Retinal Diseases Detection and Explainability Using OCT Images Mohamed Chetoui and Moulay A. Akhlouji	358

5

Grand Challenge on Automatic Lung Cancer Patient Management

An Automated Workflow for Lung Nodule Follow-Up Recommendation Using Deep Learning. Krishna Chaitanya Kaluva, Kiran Vaidhya, Abhijith Chunduru, Sambit Tarai, Sai Prasad Pranav Nadimpalli, and Suthirth Vaidya	369 ,
Pulmonary-Nodule Detection Using an Ensemble of 3D SE-ResNet18 and DPN68 Models, Or Katz, Dan Presil, Liz Cohen, Yael Schwartzbard, Sarah Hoch, and Shlomo Kashani	378
3DCNN for Pulmonary Nodule Segmentation and Classification Zhenhuan Tian, Yizhuan Jia, Xuejan Men, and Zhongwei Sun	386
Residual Networks for Pulmonary Nodule Segmentation and Texture Characterization Adrian Galdran and Hamid Bouchachia	396
Automatic Lung Cancer Follow-Up Recommendation with 3D Deep Learning Gurraj Atwal and Hady Alunady Phoalady	406
Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung	419
Author Index	429